
Characteristics of Alkanes, alkenes, and alkynes

Polarity is due to charge distribution within the molecule:

Alkynes have higher boiling point, melting point, and density. Polarity drops from alkynes to alkanes as well as reactivity and boiling point values (polar substances stick together more strongly than non-polar)

Acidity of Alkanes, Alkenes, and Alkynes

- Equilibrium lies to the left in each of these reactions as alkanes, alkenes, and alkynes are very weakly acidic.

FALL 2025

October 30, 2025

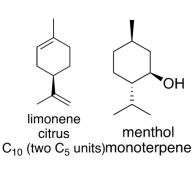
Natural Product Containing Alkenes: Fats

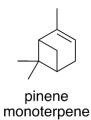
Monounsaturated triglyceride

- The triglyceride is a **triester of glycerol**
- It is a polyunsaturated (>1 double bond) fats (e.g. canola oil)- unsaturation refers to the double bonds.
- Trans double bonds can also be generated in fats, which are then called trans fats.
- Hydrogenation give saturated fats (unsaturation removed)

Major component of margerine

A solid saturated fat (margarine)

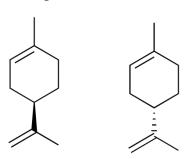

This molecule has greater London dispersion forces, cause it to exist as a solid

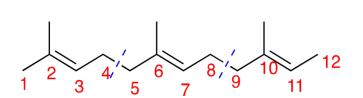

Diacetyl

Butter flavoring that adds a yellow color

Natural Products Containing Alkenes: Terpenes

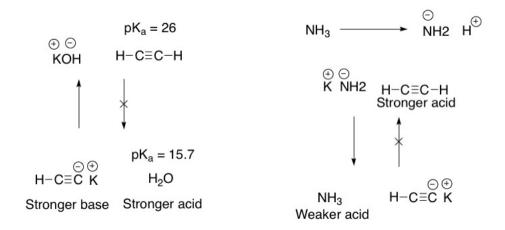
isoprene
2-methyl-1,3-butadiene
C₅ unit


- 1 C₅ Hemiterpene
- 2 C₅ Monoterpene
- 3 C₅ Sesquiterpene
- 4 C₅ Diterpene
- 5 C₅ Sesterterpene
- 6 C₅ Triterpene


2 isoprene units of pinene highlighted in blue and red

- Steroids are made from triterpenes
- -Pinene is made from two isoprene units

Examples:

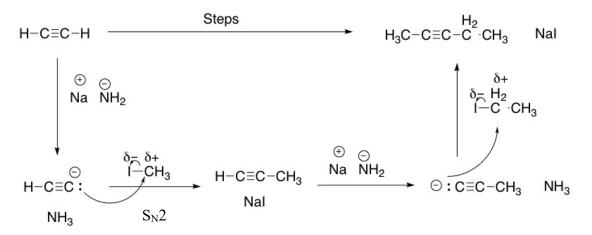

Enatiomers of Limonene

2,6,10-trimethyldodeca-2,6,10-triene

2,6,10-trimethyl-2,6,10-dodecatriene


Deprotonating acetylenes

KOH will not deprotonate acetylene because it is a weaker base than acetylenes conjugate base (acetylide).

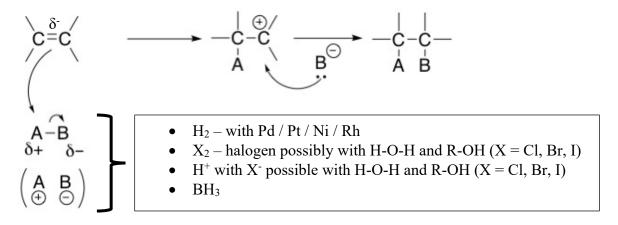

- KNH₂ will deprotonate acetylene, as the resulting acetylide is a weaker base. Ammonia pKa is 36. Other bases such as NaCH₃ can also be used to deprotonate acetylene.

More Example

Example:

Organic synthesis example:

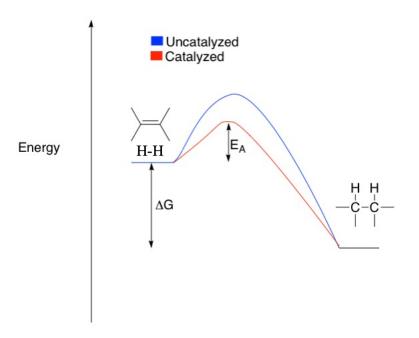
Both substitution reactions involving methyl iodide and ethyl iodide are S_N2 , as the primary and secondary carbons will not hold the positive charge that is characteristic of an S_N1 intermediate (tertiary carbocation).


HCN vs C₂H₂

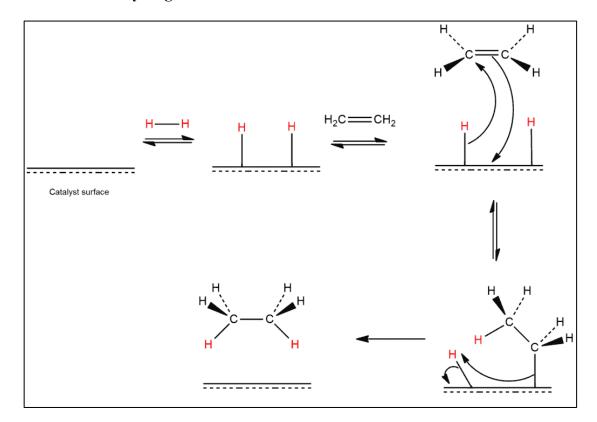
- HCN is more acidic with a pKa of 9.0 due to the N atom being more electronegative than C atom (**Note:** the N atom is pulling the electron density away).

Addition to Alkene and Alkynes Reaction:

- Large amount of negative charge concentrated on the π -bond (δ -). An **electrophile**, a species that seeks negative charge (electron-loving), would then get attacked by the electrons in the π -bond, hence forming a new bond.


General Mechanism

A is an electrophile – seeks electrons B is a nucleophile – seeks nucleus Alkene = olefin


Hydrogenation Addition of H₂

This reaction is **stereospecific**, meaning that the stereochemistry of the starting material determines the stereochemistry of the product (in this reaction, **cis**). Needs a catalyst for the reaction to proceed. The metals palladium (Pd), nickel (Ni), rhodium (Rh), and platinum (Pt) act as catalysts to facilitate this reaction.

Catalysts accelerate the reaction rate by providing a lower energy pathway (red curve above). In general, they are not permanently converted to other products

Mechanism of hydrogenation

Hydrogenation examples

Example 1: 1,2-dimethylcyclobutene

1,2-dimethylcyclobutene cis-1,2-dimethylcyclobutane

The hydrogenation can occur from the top or the bottom, which in this case produces the same product (cis isomer of 1,2-dimethylcyclobutane). The starting material is achiral, and the product is a **meso compound** (two stereogenic centers, but a plane of symmetry)